Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 697
Filtrar
1.
Brain Res ; 1835: 148908, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38582416

RESUMEN

BDNF, a neurotrophic factor, and its receptors have been implicated in the pathophysiology of mild traumatic brain injury (mTBI). The brainstem houses many vital functions, that are also associated with signs and symptoms of mTBI, but has been understudied in mTBI animal models. We determined the extent to which neurotrophic protein and associated receptor expression is affected within the brainstem of adult rats following mTBI. Their behavioral function was assessed and temporal expression of the 'negative' regulators of neuronal function (p75, t-TrkB, and pro-BDNF) and 'positive' neuroprotective (FL-TrkB and m-BDNF) protein isoforms were determined via western blot and immunohistochemistry at 1, 3, 7, and 14 post-injury days (PID) following mTBI or sham (control) procedure. Within the brainstem, p75 expression increased at PID 1 vs. sham animals. t-TrkB and pro-BDNF expression increased at PID 7 and 14. The 'positive' protein isoforms of FL-TrkB and m-BDNF expression were increased only at PID 7. The ratio of t-TrkB:FL-TrkB (negative:positive) was substantial across groups and time points, suggesting a negative impact of neurotrophic signaling on neuronal function. Additional NeuN experiments revealed cell death occurring within a subset of neurons within the medulla. While behavioral measures improved by PID 7-14, negative neurotrophic biochemical responses persisted. Despite the assertion that mTBI produces "mild" injury, evidence of cell death was observed in the medulla. Ratios of TrkB and BDNF isoforms with conflicting functions suggest that future work should specifically measure each subtype since they induce opposing downstream effects on neuronal function.

2.
Mol Inform ; : e202400043, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619318

RESUMEN

The important role that the neurotrophin tyrosine kinase receptor - TrkB has in the pathogenesis of several neurodegenerative conditions such are Alzheimer's disease, Parkinson's disease, Huntington's disease, has been well described. This shouldn't be a surprise, since in the physiological conditions, once activated by brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT-4/5), the TrkB receptor promotes neuronal survival, differentiation and synaptic function. Considering that the natural ligands for TrkB receptor are large proteins, it is a challenge to discover small molecule capable to mimic their effects. Even though, the surface of receptor that is interacting with BDNF or NT-4/5 is known, there was always a question which pocket and interaction is responsible for activation of it. In order to answer this challenging question, we have used molecular dynamic (MD) simulations and Pocketron algorithm which enabled us to detect, for the first time, a pocket network existing in the interacting domain (d5) of the receptor; to describe them and to see how they are communicating with each other. This new discovery gave us potential new areas on receptor that can be targeted and used for structure-based drug design approach in the development of the new ligands.

3.
bioRxiv ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38559020

RESUMEN

Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRSE196K mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of YarsE196K mice modelling DI-CMT. We determined that YarsE196K homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRSE196K, but not TyrRSWT, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.

4.
Neurobiol Dis ; 195: 106501, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38583640

RESUMEN

Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRSE196K mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of YarsE196K mice modelling DI-CMT. We determined that YarsE196K homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRSE196K, but not TyrRSWT, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.

5.
Curr Issues Mol Biol ; 46(3): 2528-2543, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38534776

RESUMEN

Neurotrophins (NTs) are four small proteins produced by both neuronal and non-neuronal cells; they include nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). NTs can exert their action through both genomic and non-genomic mechanisms by interacting with specific receptors. Initial studies on NTs have identified them only as functional molecules of the nervous system. However, recent research have shown that some tissues and organs (such as the lungs, skin, and skeletal and smooth muscle) as well as some structural cells can secrete and respond to NTs. In addition, NTs perform several roles in normal and pathological conditions at different anatomical sites, in both fetal and postnatal life. During pregnancy, NTs are produced by the mother, placenta, and fetus. They play a pivotal role in the pre-implantation process and in placental and embryonic development; they are also involved in the development of the brain and respiratory system. In the postnatal period, it appears that NTs are associated with some diseases, such as sudden infant death syndrome (SIDS), asthma, congenital central hypoventilation syndrome (CCHS), and bronchopulmonary dysplasia (BPD).

6.
Methods Mol Biol ; 2754: 361-385, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38512677

RESUMEN

Alzheimer's disease (AD), most tauopathies, and other neurodegenerative diseases are highly associated to impaired neurotrophin regulation and imbalanced neurotrophin transport and distribution. Neurotrophins are crucial for the survival and maintenance of distinct neuronal population therefore their supply is essential for a healthy brain. Tau phosphorylation occurs at different sites of the tau protein and some phospho-epitopes are highly associated to AD (e.g., abnormally phosphorylated tau at Thr212/Ser214). Though the importance of neurotrophins is well known, their analysis in tissue is not trivial and needs careful consideration. Here a detailed protocol is presented, which combines in situ hybridization (ISH) with immunohistochemistry (IHC) to analyze neurotrophin mRNA expression during tau neuropathology and the results were confirmed by immunological methods.With this protocol, it was demonstrated that Brain-Derived Neurotrophic Factor (BDNF) and its receptor Tropomyosin receptor kinase B (TrkB) were significantly decreased in tau-transgenic mice compared to their age-matched littermates. Neurotrophin-3 (NT-3) and its receptor TrkC were not altered with statistical significance, but a tendency for decreased NT-3 and slightly increased TrkC expression was observed in tau transgenic mice. The loss of BDNF-ISH signal was predominantly observed in hippocampus (CA1 and CA3) and cortex (layer II-VI) and verified by BDNF-immunoreactivity. Decreased BDNF and TrkB mRNA was negatively correlated with abnormal tau phosphorylation at Thr212/Ser214 in cortical neurons in transgenic mice. Strikingly, no correlation was observed with age-related phospho-epitopes such as Ser202/Thr205. Interestingly, both, the mRNA and protein levels of Nerve Growth Factor (NGF) were significantly increased in hippocampal neurons in the tau models as demonstrated by ISH, immunofluorescence, and Western Blotting. Here, some co-localization of NGF mRNA and phospho-tau (Thr212/Ser214) was observed but was a rare event. Since there is growing evidence for the relevance of neurotrophic factor distribution in the pathogenesis of neurodegeneration, this technique is a useful tool to investigate the underlying mechanisms and potential therapeutic intervention.


Asunto(s)
Enfermedad de Alzheimer , Factor Neurotrófico Derivado del Encéfalo , Ratones , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Inmunohistoquímica , Ratones Transgénicos , Factor de Crecimiento Nervioso , ARN Mensajero/genética , ARN Mensajero/metabolismo , Epítopos , Hibridación in Situ
7.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38473977

RESUMEN

Specific subpopulations of neurons in nerve and sensory systems must be developed and maintained, and this is accomplished in significant part by neurotrophins (NTs) and the signaling receptors on which they act, called tyrosine protein kinase receptors (Trks). The neurotrophins-tyrosine protein kinase receptors (NTs/Trks) system is involved in sensory organ regulation, including the visual system. An NTs/Trks system alteration is associated with neurodegeneration related to aging and diseases, including retinal pathologies. An emergent model in the field of translational medicine, for instance, in aging study, is the annual killifish belonging to the Nothobranchius genus, thanks to its short lifespan. Members of this genus, such as Nothobranchius guentheri, and humans share a similar retinal stratigraphy. Nevertheless, according to the authors' knowledge, the occurrence and distribution of the NTs/Trks system in the retina of N. guentheri has never been investigated before. Therefore, the present study aimed to localize neurotrophin BDNF, NGF, and NT-3 and TrkA, TrkB, and TrkC receptors in the N. guentheri retina using the immunofluorescence method. The present investigation demonstrates, for the first time, the occurrence of the NTs/Trks system in N. guentheri retina and, consequently, the potential key role of these proteins in the biology and survival of the retinal cells.


Asunto(s)
Killifishes , Factores de Crecimiento Nervioso , Receptores de Factor de Crecimiento Nervioso , Humanos , Receptores de Factor de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Proteínas Tirosina Quinasas Receptoras/fisiología , Retina/metabolismo , Receptor trkA , Neurotrofina 3 , Factor Neurotrófico Derivado del Encéfalo
8.
Heliyon ; 10(2): e24753, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38304771

RESUMEN

Background: Neurotrophic activity constitutes a crucial factor in the recovery from neurological injuries and is impaired in neurodegenerative disorders. Preclinical studies of neurotrophic factors to improve outcome of neurodegenerative diseases have yielded promising results. However, due to the complexity of these therapies, the clinical translation of this approach was so far not successful and more feasible treatments with neurotrophic activity may be promising alternatives. Therefore, highly sensitive and robust assays for compound screening are required. New method: Nerve growth factor is known to induce Neurofilament-L (NF-L) expression in a rat pheochromocytoma cell line (PC12 cells) during early neuronal differentiation. We generated and characterized an enhanced green fluorescent protein (EGFP)-NF-L reporter PC12 cell line for the development of a cell-based assay (designated Neurofilament-L Bioassay) that allows straightforward quantification of early neuronal differentiation based on NF-L expression. Results: Using Cerebrolysin® as a role model for a pharmacological compound that stimulates neurotrophic activity in the central nervous system, the Neurofilament-L Bioassay was proved to be a robust, specific, and reproducible method. Comparison with existing methods: It was already shown that NF-L expression correlates with neurite outgrowth in PC12 cells. Currently, quantification of neurite outgrowth is the most commonly used method to evaluate neuronal differentiation in PC12 cells, an approach that is time-consuming and of high variability. Conclusions: This work describes the development of an EGFP-NF-L reporter PC12 cell-based assay as a robust and reproducible tool for "high throughput" compound screening for neurotrophic activity.

9.
Environ Toxicol ; 39(5): 3149-3159, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38323385

RESUMEN

Methylmercury (MeHg) causes selective neuronal damage to cerebrocortical neurons (CCNs) in the central nervous system, but not to hippocampal neurons (HiNs), which are highly vulnerable to neurodegenerative diseases. In our previous study using cultured rat neurons, we performed a comprehensive gene expression analysis and found that the brain-derived neurotrophic factor (BDNF), a neurotrophin (NT), was specifically expressed in HiNs. Therefore, to elucidate the causal factors of MeHg toxicity resistance in HiNs, we conducted a comparative study of the protein expression and function of several NTs, including BDNF, using CCNs showing vulnerability to MeHg toxicity and HiNs showing resistance. BDNF was specifically expressed in HiNs, whereas nerve growth factor was barely detectable in either neuron type. In addition, other NTs, NT3 and NT4/5, were expressed in small but nearly equal amounts in both neuron types. Furthermore, among the various pathways involved in MeHg neurotoxicity, the p44/42 MAPK pathway was specifically activated in HiNs, even without MeHg treatment. siRNAs were used to reduce NTs in both neuron types. Only a specific reduction in BDNF attenuated the resistance to MeHg toxicity and p44/42 MAPK activation in HiNs. In addition, the external addition of BDNF and NT4/5, which act on the same tyrosine receptor kinase (Trk), TrkB, suppressed MeHg neurotoxicity in both neuron types. These results suggest that BDNF, expressed specifically in HiNs, is involved in the resistance to MeHg neurotoxicity via TrkB. Additionally, the activation of the p44/42 MAPK pathway may contribute to the inhibitory effect of BDNF on MeHg neurotoxicity.


Asunto(s)
Compuestos de Metilmercurio , Síndromes de Neurotoxicidad , Ratas , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Compuestos de Metilmercurio/toxicidad , Neuronas , Síndromes de Neurotoxicidad/metabolismo , Hipocampo/metabolismo
10.
Pediatr Neurol ; 153: 96-102, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38359527

RESUMEN

The road between a hypothesis about a disease or condition and its cure or palliation is never simply linear. There are many tantalizing tangents to be chased and many seemingly obvious truths with countless exceptions; this is usually a feature, not a bug, as they say in computer programming. In the tangents and exceptions are clues and alternative roads to science and medicine that can provide cures and palliative measures, sometimes for diseases or conditions other than the one being studied. The narrative that follows uses the author's scientific experience in childhood nervous system cancer to illustrate the importance of a robust, bidirectional interaction between the laboratory bench and the clinic bedside in the quest for solutions to problems of health, longevity, and quality of life.


Asunto(s)
Calidad de Vida , Humanos
11.
J Clin Med ; 13(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38337587

RESUMEN

BACKGROUND: The molecular underpinnings of insufficient sleep remain underexplored, with disruptions in the neurotrophic signaling pathway emerging as a potential explanation. Neurotrophins (NTs), including brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT3), neurotrophin 4 (NT4), and glial-cell-line-derived growth factor (GDNF), play crucial roles in nerve cell growth and repair. However, their associations with sleep patterns are poorly understood. This study aimed to investigate the relationship between the chosen neurotrophins and objective sleep parameters. METHODS: The study involved 81 participants subjected to polysomnography (PSG). Blood samples were collected after PSG. The mRNA expression and serum protein concentrations of BDNF, GDNF, NT3, and NT4 were measured using real-time quantitative reverse-transcription PCR (qRT-PCR) or enzyme-linked immunosorbent assay (ELISA) methods, respectively. RESULTS: BDNF and NT3 proteins were negatively correlated with NREM events, while NT4 protein positively correlated with REM events. Electroencephalography power analysis revealed BDNF protein's negative correlation with delta waves during rapid eye movement and non-rapid eye movement sleep. CONCLUSION: The study highlights associations between neurotrophins and sleep, emphasizing BDNF's role in regulating NREM and REM sleep. The EEG power analysis implicated BDNF in delta wave modulation, shedding light on potential neurotrophic mechanisms underlying sleep effects on cognitive and mood processes.

12.
Biomedicines ; 12(2)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38398029

RESUMEN

In the etiology of discogenic pain, attention is paid to the role of neurotrophic factors, which include classic neurotrophins (NTs). This study aimed to assess changes in the concentrations of NT-3 and NT-4 in the intervertebral discs (IVDs) of the lumbosacral (L/S) spine depending on the advancement of degenerative changes, pain severity, habits, and comorbidities. The study group included 113 patients who underwent microdiscectomy due to degenerative IVD disease of the L/S spine. The severity of degenerative IVD changes was assessed using the five-point Pfirrmann scale, and the pain intensity was assessed according to the visual analog scale (VAS). In turn, the control group included 81 participants from whom IVDs of the L/S section of the spine were collected post-mortem during forensic autopsy or organ donation. At the mRNA level, we noted NT-3 overexpression in the test samples compared with the controls (fold change (FC) = 9.12 ± 0.56; p < 0.05), while NT-4 transcriptional activity was decreased in the test samples compared with the controls (FC = 0.33 ± 0.07; p < 0.05). However, at the protein level, the concentrations of NT-3 (134 ± 5.78 pg/mL vs. 6.78 ± 1.17 pg/mL; p < 0.05) and NT-4 (316.77 ± 8.19 pg/mL vs. 76.92 ± 4.82 pg/mL; p < 0.05) were significantly higher in the test samples compared with the control samples. Nevertheless, the concentration of both proteins did not statistically significantly change depending on the advancement of degenerative changes and the pain intensity (p > 0.05). In addition, higher levels of NT-3 and NT-4 were noted in IVD samples from patients who consumed alcohol, smoked tobacco, were overweight/obese, or had comorbid diabetes compared with patients without these risk factors (p < 0.05). Our analysis confirmed that differences in the degenerative process of IVD, energy metabolism, and lifestyle are related to changes in the concentration profiles of NT-3 and NT-4.

13.
Curr Issues Mol Biol ; 46(2): 965-989, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38392180

RESUMEN

Nerve growth factor (NGF) plays a dual role both in inflammatory states and cancer, acting both as a pro-inflammatory and oncogenic factor and as an anti-inflammatory and pro-apoptotic mediator in a context-dependent way based on the signaling networks and its interaction with diverse cellular components within the microenvironment. This report aims to provide a summary and subsequent review of the literature on the role of NGF in regulating the inflammatory microenvironment and tumor cell growth, survival, and death. The role of NGF in inflammation and tumorigenesis as a component of the inflammatory system, its interaction with the various components of the respective microenvironments, its ability to cause epigenetic changes, and its role in the treatment of cancer have been highlighted in this paper.

14.
Glia ; 72(4): 809-827, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38205694

RESUMEN

Recent findings highlight myelin breakdown as a decisive early event in Alzheimer's Disease (AD) acting as aggravating factor of its progression. However, it is still unclear whether myelin loss is attributed to increased oligodendrocyte vulnerability, reduced repairing capacity or toxic stimuli. In the present study, we sought to clarify the starting point of myelin disruption accompanied with Oligodendrocyte Progenitor Cell (OPC) elimination in the brain of the 5xFAD mouse model of AD at 6 months of age in Dentate Gyrus of the hippocampus in relation to neurotrophin system. Prominent inflammation presence was detected since the age of 6 months playing a key role in myelin disturbance and AD progression. Expression analysis of neurotrophin receptors in OPCs was performed to identify new targets that could increase myelination in health and disease. OPCs in both control and 5xFAD mice express TrkB, TrkC and p75 receptors but not TrkA. Brain-derived neurotrophic factor (BDNF) that binds to TrkB receptor is well-known about its pro-myelination effect, promoting oligodendrocytes proliferation and differentiation, so we focused our investigation on its effects in OPCs under neurodegenerative conditions. Our in vitro results showed that BDNF rescues OPCs from death and promotes their proliferation and differentiation in presence of the toxic Amyloid-ß 1-42. Collectively, our results indicate that BDNF possess an additional neuroprotective role through its actions on oligodendrocytic component and its use could be proposed as a drug-based myelin-enhancing strategy, complementary to amyloid and tau centered therapies in AD.


Asunto(s)
Enfermedad de Alzheimer , Vaina de Mielina , Ratones , Animales , Vaina de Mielina/metabolismo , Enfermedad de Alzheimer/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Encéfalo/metabolismo , Oligodendroglía/metabolismo
15.
Int J Infect Dis ; 142: 106946, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38278287

RESUMEN

OBJECTIVES: Mycobacterium leprae is able to infect Schwann cells leading to neural damage. Neurotrophins are involved in nervous system plasticity and impact neural integrity during diseases. Investigate the association between single nucleotide polymorphisms in neurotrophin genes and leprosy phenotypes, especially neural damage. DESIGN: We selected single nucleotide polymorphisms in neurotrophins or their receptors genes associated with neural disorders: rs6265 and rs11030099 of brain-derived neurotrophic factor (BDNF), rs6330 of BDNF, rs6332 in NT3 and rs2072446 of P75NTR. The association of genetic frequencies with leprosy phenotypes was investigated in a case-control study. RESULTS: An association of the BDNF single nucleotide polymorphism rs11030099 with the number of affected nerves was demonstrated. The "AA+AC" genotypes were demonstrated to be protective against nerve impairment. However, this variation does not affect BDNF serum levels. BDNF is an important factor for myelination of Schwann cells and polymorphisms in this gene can be associated with leprosy outcome. Moreover, rs11030099 is located in the binding region for micro-RNA (miRNA) 26a that could be involved in control of BDNF expression. We demonstrated different expression levels of this miRNA in polar forms of leprosy. CONCLUSION: Our findings demonstrate for the first time an association between the polymorphism rs11030099 in the BDNF gene and neural commitment in leprosy and may indicate a possible role of miRNA-26a acting synergistically to these genetic variants in neural damage development.


Asunto(s)
Lepra , MicroARNs , Humanos , Factor Neurotrófico Derivado del Encéfalo/genética , Estudios de Casos y Controles , Lepra/genética , Lepra/microbiología , Mycobacterium leprae/genética , Polimorfismo de Nucleótido Simple
17.
Mol Biol Rep ; 51(1): 111, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227208

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) is characterized by progressive cognitive decline and a reduction in hippocampal neurotrophins, in which trimethytin (TMT) infusion causes tangles and neuronal dysfunction, creating an AD-like model in rats. Previous studies have demonstrated that crocin, which has anti-inflammatory properties, can enhance learning, memory acquisition, and cognitive behavior. This study aimed to assess the combined impact of aerobic exercise and crocin on memory, learning, and hippocampal Tau and neurotrophins gene expression in AD-like model rats. METHODS: Forty male Sprague Dawley rats were randomly divided into five groups: (1) healthy control, (2) Alzheimer's control, (3) endurance training, (4) crocin consumption, and (5) endurance training + crocin. Alzheimer's induction was achieved in groups 2-5 through intraperitoneal injection of 8 mg/kg TMT. Rats in groups 3 and 5 engaged in treadmill running three sessions per week, 15-30 min per session, at a speed of 15-20 m/min for eight weeks, and groups 4 and 5 received daily crocin supplementation of 25 mg/kg. RESULTS: Alzheimer's induction with TMT showed significant reduction in memory, learning, NGF, BDNF, and TrkB gene expression, and increase in tau gene expression (all p < 0.05). Notably, endurance training and crocin consumption separately significantly increased memory, learning, NGF, BDNF, and TrkB gene expression while significantly decreasing tau gene expression (all p < 0.05). Importantly, combined endurance training with crocin yielded the most profound effects on memory (p = 0.001), NGF (p = 0.002), BDNF (p = 0.001), and TrkB (p = 0.003) gene expression (p < 0.005), as well as a reduction in tau gene expression (p = 0.001). CONCLUSION: These findings underscore the possible impact of endurance training, particularly when coupled with crocin, on enhancing memory, learning, and neurotrophin gene expression and reducing tau gene expression in Alzheimer's rats. These results highlight the possibility of synergistic interventions for improved therapeutic outcomes.


Asunto(s)
Enfermedad de Alzheimer , Carotenoides , Entrenamiento Aeróbico , Masculino , Ratas , Animales , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Factor Neurotrófico Derivado del Encéfalo/genética , Ratas Sprague-Dawley , Expresión Génica
18.
Phytomedicine ; 124: 155272, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181530

RESUMEN

BACKGROUND: Alzheimer's diseases (AD) and dementia are among the highly prevalent neurological disorders characterized by deposition of beta amyloid (Aß) plaques, dense deposits of highly phosphorylated tau proteins, insufficiency of acetylcholine (ACh) and imbalance in glutamatergic system. Patients typically experience cognitive, behavioral alterations and are unable to perform their routine activities. Evidence also suggests that inflammatory processes including excessive microglia activation, high expression of inflammatory cytokines and release of free radicals. Thus, targeting inflammatory pathways beside other targets might be the key factors to control- disease symptoms and progression. PURPOSE: This review is aimed to highlight the mechanisms and pathways involved in the neuroprotective potentials of lead phytochemicals. Further to provide updates regarding challenges associated with their use and their progress into clinical trials as potential lead compounds. METHODS: Most recent scientific literature on pre-clinical and clinical data published in quality journals especially on the lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin was collected using SciFinder, PubMed, Google Scholar, Web of Science, JSTOR, EBSCO, Scopus and other related web sources. RESULTS: Literature review indicated that the drug discovery against AD is insufficient and only few drugs are clinically approved which have limited efficacy. Among the therapeutic options, natural products have got tremendous attraction owing to their molecular diversity, their safety and efficacy. Research suggest that natural products can delay the disease onset, reduce its progression and regenerate the damage via their anti-amyloid, anti-inflammatory and antioxidant potentials. These agents regulate the pathways involved in the release of neurotrophins which are implicated in neuronal survival and function. Highly potential lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin regulate neuroprotective signaling pathways implicated in neurotrophins-mediated activation of tropomyosin receptor kinase (Trk) and p75 neurotrophins receptor (p75NTR) family receptors. CONCLUSIONS: Phytochemicals especially phenolic compounds were identified as highly potential molecules which ameliorate oxidative stress induced neurodegeneration, reduce Aß load and inhibit vital enzymes. Yet their clinical efficacy and bioavailability are the major challenges which need further interventions for more effective therapeutic outcomes.


Asunto(s)
Enfermedad de Alzheimer , Productos Biológicos , Curcumina , Fármacos Neuroprotectores , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Resveratrol/farmacología , Curcumina/farmacología , Quercetina/farmacología , Apigenina/farmacología , Genisteína/farmacología , Péptidos beta-Amiloides/metabolismo , Estrés Oxidativo , Antiinflamatorios/farmacología , Productos Biológicos/farmacología , Transducción de Señal , Factores de Crecimiento Nervioso/metabolismo , Fitoquímicos/uso terapéutico , Fármacos Neuroprotectores/química
19.
Biomedicines ; 12(1)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38255217

RESUMEN

Acute brain injuries (ABIs) pose a substantial global burden, demanding effective prognostic indicators for outcomes. This study explores the potential of urinary p75 neurotrophin receptor (p75NTR) concentration as a prognostic biomarker, particularly in relation to unfavorable outcomes. The study involved 46 ABI patients, comprising sub-cohorts of aneurysmal subarachnoid hemorrhage, ischemic stroke, and traumatic brain injury. Furthermore, we had four healthy controls. Samples were systematically collected from patients treated at the University Hospital of Turku between 2017 and 2019, at early (1.50 ± 0.70 days) and late (9.17 ± 3.40 days) post-admission time points. Urinary p75NTR levels, measured by ELISA and normalized to creatinine, were compared against patients' outcomes using the modified Rankin Scale (mRS). Early urine samples showed no significant p75NTR concentration difference between favorable and unfavorable mRS groups. In contrast, late samples exhibited a statistically significant increase in p75NTR concentrations in the unfavorable group (p = 0.033), demonstrating good prognostic accuracy (AUC = 70.9%, 95% CI = 53-89%, p = 0.03). Assessment of p75NTR concentration changes over time revealed no significant variation in the favorable group (p = 0.992) but a significant increase in the unfavorable group (p = 0.009). Moreover, p75NTR concentration was significantly higher in ABI patients (mean ± SD 40.49 ± 28.83-65.85 ± 35.04 ng/mg) compared to healthy controls (mean ± SD 0.54 ± 0.44 ng/mg), irrespective of sampling time or outcome (p < 0.0001). In conclusion, late urinary p75NTR concentrations emerged as a potential prognostic biomarker for ABIs, showing increased levels associated with unfavorable outcomes regardless of the specific type of brain injury. While early samples exhibited no significant differences, the observed late increases emphasize the time-dependent nature of this potential biomarker. Further validation in larger patient cohorts is crucial, highlighting the need for additional research to establish p75NTR as a reliable prognostic biomarker across various ABIs. Additionally, its potential role as a diagnostic biomarker warrants exploration.

20.
Int J Biol Macromol ; 259(Pt 2): 129067, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38163510

RESUMEN

Major depressive disorder (MDD) is a complex psychiatric condition with diverse etiological factors. Typical pathological features include decreased cerebral cortex, subcortical structures, and grey matter volumes, as well as monoamine transmitter dysregulation. Although medications exist to treat MDD, unmet needs persist due to limited efficacy, induced side effects, and relapse upon drug withdrawal. Polysaccharides offer promising new therapies for MDD, demonstrating antidepressant effects with minimal side effects and multiple targets. These include neurotransmitter, neurotrophin, neuroinflammation, hypothalamic-pituitary-adrenal axis, mitochondrial function, oxidative stress, and intestinal flora regulation. This review explores the latest advancements in understanding the pharmacological actions and mechanisms of polysaccharides in treating major depression. We discuss the impact of polysaccharides' diverse structures and properties on their pharmacological actions, aiming to inspire new research directions and facilitate the discovery of novel anti-depressive drugs.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/tratamiento farmacológico , Sistema Hipotálamo-Hipofisario/patología , Sistema Hipófiso-Suprarrenal/patología , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...